Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 177
Filtrar
1.
Nature ; 627(8002): 165-173, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38326613

RESUMO

The arachnoid barrier delineates the border between the central nervous system and dura mater. Although the arachnoid barrier creates a partition, communication between the central nervous system and the dura mater is crucial for waste clearance and immune surveillance1,2. How the arachnoid barrier balances separation and communication is poorly understood. Here, using transcriptomic data, we developed transgenic mice to examine specific anatomical structures that function as routes across the arachnoid barrier. Bridging veins create discontinuities where they cross the arachnoid barrier, forming structures that we termed arachnoid cuff exit (ACE) points. The openings that ACE points create allow the exchange of fluids and molecules between the subarachnoid space and the dura, enabling the drainage of cerebrospinal fluid and limited entry of molecules from the dura to the subarachnoid space. In healthy human volunteers, magnetic resonance imaging tracers transit along bridging veins in a similar manner to access the subarachnoid space. Notably, in neuroinflammatory conditions such as experimental autoimmune encephalomyelitis, ACE points also enable cellular trafficking, representing a route for immune cells to directly enter the subarachnoid space from the dura mater. Collectively, our results indicate that ACE points are a critical part of the anatomy of neuroimmune communication in both mice and humans that link the central nervous system with the dura and its immunological diversity and waste clearance systems.


Assuntos
Aracnoide-Máter , Encéfalo , Dura-Máter , Animais , Humanos , Camundongos , Aracnoide-Máter/anatomia & histologia , Aracnoide-Máter/irrigação sanguínea , Aracnoide-Máter/imunologia , Aracnoide-Máter/metabolismo , Transporte Biológico , Encéfalo/anatomia & histologia , Encéfalo/irrigação sanguínea , Encéfalo/imunologia , Encéfalo/metabolismo , Dura-Máter/anatomia & histologia , Dura-Máter/irrigação sanguínea , Dura-Máter/imunologia , Dura-Máter/metabolismo , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/metabolismo , Perfilação da Expressão Gênica , Imageamento por Ressonância Magnética , Camundongos Transgênicos , Espaço Subaracnóideo/anatomia & histologia , Espaço Subaracnóideo/irrigação sanguínea , Espaço Subaracnóideo/imunologia , Espaço Subaracnóideo/metabolismo , Líquido Cefalorraquidiano/metabolismo , Veias/metabolismo
2.
EBioMedicine ; 91: 104558, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37043871

RESUMO

BACKGROUND: Routes along the olfactory nerves crossing the cribriform plate that extend to lymphatic vessels within the nasal cavity have been identified as a critical cerebrospinal fluid (CSF) outflow pathway. However, it is still unclear how the efflux pathways along the nerves connect to lymphatic vessels or if any functional barriers are present at this site. The aim of this study was to anatomically define the connections between the subarachnoid space and the lymphatic system at the cribriform plate in mice. METHODS: PEGylated fluorescent microbeads were infused into the CSF space in Prox1-GFP reporter mice and decalcification histology was utilized to investigate the anatomical connections between the subarachnoid space and the lymphatic vessels in the nasal submucosa. A fluorescently-labelled antibody marking vascular endothelium was injected into the cisterna magna to demonstrate the functionality of the lymphatic vessels in the olfactory region. Finally, we performed immunostaining to study the distribution of the arachnoid barrier at the cribriform plate region. FINDINGS: We identified that there are open and direct connections from the subarachnoid space to lymphatic vessels enwrapping the olfactory nerves as they cross the cribriform plate towards the nasal submucosa. Furthermore, lymphatic vessels adjacent to the olfactory bulbs form a continuous network that is functionally connected to lymphatics in the nasal submucosa. Immunostainings revealed a discontinuous distribution of the arachnoid barrier at the olfactory region of the mouse. INTERPRETATION: Our data supports a direct bulk flow mechanism through the cribriform plate allowing CSF drainage into nasal submucosal lymphatics in mice. FUNDING: This study was supported by the Swiss National Science Foundation (310030_189226), Dementia Research Switzerland-Synapsis Foundation, the Heidi Seiler Stiftung and the Fondation Dr. Corinne Schuler.


Assuntos
Vasos Linfáticos , Nervo Olfatório , Animais , Camundongos , Osso Etmoide , Sistema Linfático/metabolismo , Espaço Subaracnóideo/metabolismo
3.
Neuroimage ; 245: 118755, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34826596

RESUMO

The study of brain clearance mechanisms is an active area of research. While we know that the cerebrospinal fluid (CSF) plays a central role in one of the main existing clearance pathways, the exact processes for the secretion of CSF and the removal of waste products from tissue are under debate. CSF is thought to be created by the exchange of water and ions from the blood, which is believed to mainly occur in the choroid plexus. This exchange has not been thoroughly studied in vivo. We propose a modified arterial spin labeling (ASL) MRI sequence and image analysis to track blood water as it is transported to the CSF, and to characterize its exchange from blood to CSF. We acquired six pseudo-continuous ASL sequences with varying labeling duration (LD) and post-labeling delay (PLD) and a segmented 3D-GRASE readout with a long echo train (8 echo times (TE)) which allowed separation of the very long-T2 CSF signal. ASL signal was observed at long TEs (793 ms and higher), indicating presence of labeled water transported from blood to CSF. This signal appeared both in the CSF proximal to the choroid plexus and in the subarachnoid space surrounding the cortex. ASL signal was separated into its blood, gray matter and CSF components by fitting a triexponential function with T2s taken from literature. A two-compartment dynamic model was introduced to describe the exchange of water through time and TE. From this, a water exchange time from the blood to the CSF (Tbl->CSF) was mapped, with an order of magnitude of approximately 60 s.


Assuntos
Água Corporal/metabolismo , Líquido Cefalorraquidiano/metabolismo , Circulação Cerebrovascular/fisiologia , Plexo Corióideo/diagnóstico por imagem , Plexo Corióideo/metabolismo , Imageamento por Ressonância Magnética/métodos , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Marcadores de Spin , Espaço Subaracnóideo/diagnóstico por imagem , Espaço Subaracnóideo/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(3)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33446503

RESUMO

Almost 150 papers about brain lymphatics have been published in the last 150 years. Recently, the information in these papers has been synthesized into a picture of central nervous system (CNS) "glymphatics," but the fine structure of lymphatic elements in the human brain based on imaging specific markers of lymphatic endothelium has not been described. We used LYVE1 and PDPN antibodies to visualize lymphatic marker-positive cells (LMPCs) in postmortem human brain samples, meninges, cavernous sinus (cavum trigeminale), and cranial nerves and bolstered our findings with a VEGFR3 antibody. LMPCs were present in the perivascular space, the walls of small and large arteries and veins, the media of large vessels along smooth muscle cell membranes, and the vascular adventitia. Lymphatic marker staining was detected in the pia mater, in the arachnoid, in venous sinuses, and among the layers of the dura mater. There were many LMPCs in the perineurium and endoneurium of cranial nerves. Soluble waste may move from the brain parenchyma via perivascular and paravascular routes to the closest subarachnoid space and then travel along the dura mater and/or cranial nerves. Particulate waste products travel along the laminae of the dura mater toward the jugular fossa, lamina cribrosa, and perineurium of the cranial nerves to enter the cervical lymphatics. CD3-positive T cells appear to be in close proximity to LMPCs in perivascular/perineural spaces throughout the brain. Both immunostaining and qPCR confirmed the presence of adhesion molecules in the CNS known to be involved in T cell migration.


Assuntos
Encéfalo/metabolismo , Sistema Linfático/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Proteínas de Transporte Vesicular/metabolismo , Idoso , Idoso de 80 Anos ou mais , Anticorpos/imunologia , Anticorpos/isolamento & purificação , Autopsia , Encéfalo/diagnóstico por imagem , Movimento Celular/genética , Sistema Nervoso Central/imunologia , Sistema Nervoso Central/metabolismo , Dura-Máter/diagnóstico por imagem , Dura-Máter/metabolismo , Endotélio Linfático/diagnóstico por imagem , Endotélio Linfático/metabolismo , Feminino , Sistema Glinfático/metabolismo , Humanos , Imuno-Histoquímica/métodos , Sistema Linfático/diagnóstico por imagem , Vasos Linfáticos/diagnóstico por imagem , Vasos Linfáticos/metabolismo , Masculino , Glicoproteínas de Membrana/isolamento & purificação , Espaço Subaracnóideo/diagnóstico por imagem , Espaço Subaracnóideo/metabolismo , Linfócitos T/imunologia , Proteínas de Transporte Vesicular/isolamento & purificação
5.
Cell Rep Med ; 2(12): 100470, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-35028611

RESUMO

Acute lymphoblastic leukemia (ALL) dissemination to the central nervous system (CNS) is a challenging clinical problem whose underlying mechanisms are poorly understood. Here, we show that primary human ALL samples injected into the femora of immunodeficient mice migrate to the skull and vertebral bone marrow and provoke bone lesions that enable passage into the subarachnoid space. Treatment of leukemia xenografted mice with a biologic antagonist of receptor activator of nuclear factor κB ligand (RANKL) blocks this entry route. In addition to erosion of cranial and vertebral bone, samples from individuals with B-ALL also penetrate the blood-cerebrospinal fluid barrier of recipient mice. Co-administration of C-X-C chemokine receptor 4 (CXCR4) and RANKL antagonists attenuate both identified routes of entry. Our findings suggest that targeted RANKL and CXCR4 pathway inhibitors could attenuate routes of leukemia blast CNS invasion and provide benefit for B-ALL-affected individuals.


Assuntos
Sistema Nervoso Central/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/imunologia , Animais , Crise Blástica/patologia , Linhagem Celular Tumoral , Proteínas de Fusão bcr-abl/metabolismo , Rearranjo Gênico , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Camundongos Endogâmicos NOD , Modelos Biológicos , Proteína de Leucina Linfoide-Mieloide/metabolismo , Invasividade Neoplásica , Osteoprotegerina/farmacologia , Leucemia-Linfoma Linfoblástico de Células Precursoras B/sangue , Leucemia-Linfoma Linfoblástico de Células Precursoras B/líquido cefalorraquidiano , Leucemia-Linfoma Linfoblástico de Células Precursoras B/patologia , Ligante RANK/antagonistas & inibidores , Ligante RANK/metabolismo , Receptores CXCR4/metabolismo , Coluna Vertebral/patologia , Espaço Subaracnóideo/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Exp Eye Res ; 200: 108250, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32956686

RESUMO

The meninges not only surround the brain and the spinal cord but also the optic nerve. Meningeal-derived extracellular matrix (ECM) is a crucial component of the pial basement membrane, glia limitans and important for maintenance of optic nerve axon integrity, homeostasis and retinal ganglion cell health. To get closer insight into optic nerve meningeal-derived ECM composition, we performed proteomic analysis of the sheep optic nerve subarachnoid space (SAS). Candidate components were confirmed in cultures of primary human meningothelial cells (phMECs) and human optic nerve samples. Sheep optic nerve SAS samples were analysed by LC-MS, identified proteins were matched to their human orthologs and filtered using gene lists representing all major ECM components. To validate these findings digital droplet PCR (ddPCR) to evaluate mRNA expression of all candidate components identified was performed on cultures of phMECs. In addition, one protein per major ECM group was stained on human optic nerve sections and on phMEC cultures. Employing LC-MS, 1273 proteins were identified and subjected to bioinformatic analysis. Gene ontology analysis revealed six out of forty-four collagen types (1A1, 1A2, 3A1, 6A2, 6A3 and 14A1), three out of eleven laminin subunits (A4, B2, C1) and six out of twenty-seven hyaluronan binding proteins (CD44, versican (VCAN), C1q binding protein, neurocan (NCAN), brevican (BCAN) and hyalaluronan proteoglycan link protein 2 (HAPLN2)) were present in our cohort. DdPCR in phMEC cell culture confirmed presence of all candidate components except NCAN, BCAN and HAPLN2. Immunohistochemistry (IHC) staining on human optic nerve sections and immunofluorescence (IF) staining on in vitro cultured phMECs showed strong immunopositivity for collagen-typeI-α1 (COL1A1), lamininγ1 (LAMC1), and VCAN. Fibronectin (FN1) was exclusively present in cultures of phMECs. Using a combined bioinformatics and immunohistological approach, we describe the ECM composition of the optic nerve subarachnoid space. As this space plays an important role in maintaining optic nerve function, a better understanding of ECM composition in this delicate environment might be key to further pathophysiological insight into optic nerve degeneration and associated disorders.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Nervo Óptico/metabolismo , Espaço Subaracnóideo/metabolismo , Animais , Imuno-Histoquímica , Masculino , Modelos Animais , Nervo Óptico/citologia , Ovinos
7.
Fluids Barriers CNS ; 17(1): 52, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32819402

RESUMO

The brain lacks a conventional lymphatic system to remove metabolic waste. It has been proposed that directional fluid movement through the arteriolar paravascular space (PVS) promotes metabolite clearance. We performed simulations to examine if arteriolar pulsations and dilations can drive directional CSF flow in the PVS and found that arteriolar wall movements do not drive directional CSF flow. We propose an alternative method of metabolite clearance from the PVS, namely fluid exchange between the PVS and the subarachnoid space (SAS). In simulations with compliant brain tissue, arteriolar pulsations did not drive appreciable fluid exchange between the PVS and the SAS. However, when the arteriole dilated, as seen during functional hyperemia, there was a marked exchange of fluid. Simulations suggest that functional hyperemia may serve to increase metabolite clearance from the PVS. We measured blood vessels and brain tissue displacement simultaneously in awake, head-fixed mice using two-photon microscopy. These measurements showed that brain deforms in response to pressure changes in PVS, consistent with our simulations. Our results show that the deformability of the brain tissue needs to be accounted for when studying fluid flow and metabolite transport.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Líquido Cefalorraquidiano/metabolismo , Hiperemia/líquido cefalorraquidiano , Hiperemia/metabolismo , Animais , Arteríolas/metabolismo , Humanos , Modelos Neurológicos , Espaço Subaracnóideo/metabolismo
8.
Drug Metab Dispos ; 48(11): 1183-1190, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32862147

RESUMO

Estimation of unbound drug concentration in the brain (Cu,brain) is an essential part of central nervous system (CNS) drug development. As a surrogate for Cu,brain in humans and nonhuman primates, drug concentration in cerebrospinal fluid (CCSF) collected by lumbar puncture is often used; however, the predictability of Cu,brain by lumbar CCSF is unclear, particularly for substrates of the active efflux transporter P-glycoprotein (P-gp). Here, we measured lumbar CCSF in cynomolgus monkey after single intravenous administration of 10 test compounds with varying P-gp transport activities. The in vivo lumbar cerebrospinal fluid (CSF)-to-plasma unbound drug concentration ratios (Kp,uu,lumbar CSF) of nonsubstrates or weak substrates of P-gp were in the range 0.885-1.34, whereas those of good substrates of P-gp were in the range 0.195-0.458 and were strongly negatively correlated with in vitro P-gp transport activity. Moreover, concomitant treatment with a P-gp inhibitor, zosuquidar, increased the Kp,uu,lumbar CSF values of the good P-gp substrates, indicating that P-gp-mediated active efflux contributed to the low Kp,uu,lumbar CSF values of these compounds. Compared with the drug concentrations in the cisternal CSF and interstitial fluid (ISF) that we previously determined in cynomolgus monkeys, the lumbar CCSF were more than triple for two and all of the good P-gp substrates examined, respectively. Although lumbar CCSF may overestimate cisternal CSF and ISF concentrations of good P-gp substrates, lumbar CCSF allowed discrimination of good P-gp substrates from the weak and nonsubstrates and can be used to estimate the impact of P-gp-mediated active efflux on drug CNS penetration. SIGNIFICANCE STATEMENT: This is the first study to systematically evaluate the penetration of various P-glycoprotein (P-gp) substrates into lumbar cerebrospinal fluid (CSF) in nonhuman primates. Lumbar CSF may contain >3-fold higher concentrations of good P-gp substrates than interstitial fluid (ISF) and cisternal CSF but was able to discriminate the good substrates from the weak or nonsubstrates. Because lumbar CSF is more accessible than ISF and cisternal CSF in nonhuman primates, these findings will help increase our understanding of drug central nervous system penetration at the nonclinical stage.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Líquido Cefalorraquidiano/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Animais , Líquido Cefalorraquidiano/química , Dibenzocicloeptenos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Líquido Extracelular/química , Líquido Extracelular/metabolismo , Vértebras Lombares , Macaca fascicularis , Masculino , Modelos Animais , Quinolinas/farmacologia , Espaço Subaracnóideo/química , Espaço Subaracnóideo/metabolismo , Distribuição Tecidual/efeitos dos fármacos
9.
Adv Drug Deliv Rev ; 165-166: 77-95, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32142739

RESUMO

Administration of substances directly into the cerebrospinal fluid (CSF) that surrounds the brain and spinal cord is one approach that can circumvent the blood-brain barrier to enable drug delivery to the central nervous system (CNS). However, molecules that have been administered by intrathecal injection, which includes intraventricular, intracisternal, or lumbar locations, encounter new barriers within the subarachnoid space. These barriers include relatively high rates of turnover as CSF clears and potentially inadequate delivery to tissue or cellular targets. Nanomedicine could offer a solution. In contrast to the fate of freely administered drugs, nanomedicine systems can navigate the subarachnoid space to sustain delivery of therapeutic molecules, genes, and imaging agents within the CNS. Some evidence suggests that certain nanomedicine agents can reach the parenchyma following intrathecal administration. Here, we will address the preclinical and clinical use of intrathecal nanomedicine, including nanoparticles, microparticles, dendrimers, micelles, liposomes, polyplexes, and other colloidalal materials that function to alter the distribution of molecules in tissue. Our review forms a foundational understanding of drug delivery to the CSF that can be built upon to better engineer nanomedicine for intrathecal treatment of disease.


Assuntos
Barreira Hematoencefálica/fisiologia , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Animais , Transporte Biológico/fisiologia , Ventrículos Cerebrais/metabolismo , Líquido Cefalorraquidiano/fisiologia , Humanos , Injeções Espinhais , Lipossomos/química , Micelas , Espaço Subaracnóideo/metabolismo
10.
Semin Cell Dev Biol ; 102: 28-39, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31786096

RESUMO

The central nervous system develops around a fluid filled space which persists in the adult within the ventricles, spinal canal and around the outside of the brain and spinal cord. Ventricular fluid is known to act as a growth medium and stimulator of proliferation and differentiation to neural stem cells but the role of CSF in the subarachnoid space has not been fully investigated except for its role in the recently described "glymphatic" system. Fundamental changes occur in the control and coordination of CNS development upon completion of brain stem and spinal cord development and initiation of cortical development. These include changes in gene expression, changes in fluid and fluid source from neural tube fluid to cerebrospinal fluid (CSF), changes in fluid volume, composition and fluid flow pathway, with exit of high volume CSF into the subarachnoid space and the critical need for fluid drainage. We used a number of experimental approaches to test a predicted critical role for CSF in development of the cerebral cortex in rodents and humans. Data from fetuses affected by spina bifida and/or hydrocephalus are correlated with experimental evidence on proliferation and migration of cortical cells from the germinal epithelium in rodent neural tube defects, as well as embryonic brain slice experiments demonstrating a requirement for CSF to contact both ventricular and pial surfaces of the developing cortex for normal proliferation and migration. We discuss the possibility that complications with the fluid system are likely to underlie developmental disorders affecting the cerebral cortex as well as function and integrity of the cortex throughout life.


Assuntos
Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Líquido Cefalorraquidiano/metabolismo , Espaço Subaracnóideo/metabolismo , Animais , Humanos
11.
World Neurosurg ; 132: 173-176, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31491571

RESUMO

BACKGROUND: Epidermoid cysts of the spinal cord may rupture, resulting in keratin dissemination in the subarachnoid space, in the ventricles, and along the central canal of the spinal cord causing meningitis, myelopathic changes, or hydrocephalus. CASE DESCRIPTION: A 53-year-old woman with no past medical history presented with a 2-week history of headache located in the occipital region associated with neck pain. Brain magnetic resonance imaging demonstrated multiple fat droplets scattered throughout the subarachnoid and intraventricular spaces with significant edema of the right posterior temporoparietal lobes with trapping of the right temporal horn of the lateral ventricle and atrium. An intracranial lesion could not be observed in the study. The spinal region was suspected as the possible culprit, and spinal imaging showed a large cystic lesion at the level of the conus medullaris. The patient underwent neuronavigation endoscopic exploration of the right lateral ventricle with flushing of the keratin particles followed by a posterior lumbar decompression with resection of the epidermoid cyst. Pathology was consistent with an epidermoid cyst. Successful recovery with improvement in symptoms was quickly observed. CONCLUSIONS: When an epidermoid cyst is suspected but no intracranial lesion is found, the intraspinal area should be studied. Rupture of a spinal epidermoid cyst may cause meningitis and inflammation producing obstructive hydrocephalus. We present this rare entity and describe the diagnostic and surgical techniques used.


Assuntos
Cisto Epidérmico/complicações , Hidrocefalia/etiologia , Hidrocefalia/cirurgia , Meningite/etiologia , Procedimentos Neurocirúrgicos/métodos , Doenças da Coluna Vertebral/complicações , Ventrículos Cerebrais/metabolismo , Ventrículos Cerebrais/patologia , Descompressão Cirúrgica , Endoscopia , Feminino , Humanos , Queratinas/metabolismo , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Neuronavegação , Ruptura , Espaço Subaracnóideo/metabolismo , Espaço Subaracnóideo/patologia , Resultado do Tratamento
12.
Sci Rep ; 9(1): 11480, 2019 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-31391474

RESUMO

Investigating the mechanisms by which metabolic wastes are cleared from nervous tissue is important for understanding natural function and the pathophysiology of several neurological disorders including Alzheimer's disease. Recent evidence suggests clearance may be the function of annular spaces around cerebral blood vessels, called perivascular spaces (PVS), through which cerebrospinal fluid (CSF) is transported from the subarachnoid space into brain parenchyma to exchange with interstitial fluid (also known as the glymphatic system). In this work, an MRI-based methodology was developed to reconstruct the PVS network in whole rat brain to better elucidate both PVS uptake and clearance pathways. MR visible tracer (Gd-albumin) was infused in vivo into the CSF-filled lateral ventricle followed by ex vivo high-resolution MR imaging at 17.6 T with an image voxel volume two orders of magnitude smaller than previously reported. Imaged tracer distribution patterns were reconstructed to obtain a more complete brain PVS network. Several PVS connections were repeatedly highlighted across different animals, and new PVS connections between ventricles and different parts of the brain parenchyma were revealed suggesting a possible role for the ventricles as a source or sink for solutes in the brain. In the future, this methodology may be applied to understand changes in the PVS network with disease.


Assuntos
Ventrículos Cerebrais/metabolismo , Sistema Glinfático/metabolismo , Imageamento por Ressonância Magnética/métodos , Albuminas/administração & dosagem , Albuminas/química , Doença de Alzheimer/patologia , Animais , Ventrículos Cerebrais/diagnóstico por imagem , Líquido Cefalorraquidiano/metabolismo , Meios de Contraste/administração & dosagem , Meios de Contraste/química , Azul Evans/administração & dosagem , Azul Evans/química , Estudos de Viabilidade , Gadolínio DTPA/administração & dosagem , Gadolínio DTPA/química , Sistema Glinfático/diagnóstico por imagem , Infusões Intraventriculares , Masculino , Modelos Animais , Ratos , Espaço Subaracnóideo/metabolismo
13.
J Clin Invest ; 129(12): 5219-5235, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31454333

RESUMO

Delayed ischemic neurological deficit (DIND) is a major driver of adverse outcomes in patients with aneurysmal subarachnoid hemorrhage (aSAH), defining an unmet need for therapeutic development. Cell-free hemoglobin that is released from erythrocytes into the cerebrospinal fluid (CSF) is suggested to cause vasoconstriction and neuronal toxicity, and correlates with the occurrence of DIND. Cell-free hemoglobin in the CSF of patients with aSAH disrupted dilatory NO signaling ex vivo in cerebral arteries, which shifted vascular tone balance from dilation to constriction. We found that selective removal of hemoglobin from patient CSF with a haptoglobin-affinity column or its sequestration in a soluble hemoglobin-haptoglobin complex was sufficient to restore physiological vascular responses. In a sheep model, administration of haptoglobin into the CSF inhibited hemoglobin-induced cerebral vasospasm and preserved vascular NO signaling. We identified 2 pathways of hemoglobin delocalization from CSF into the brain parenchyma and into the NO-sensitive compartment of small cerebral arteries. Both pathways were critical for hemoglobin toxicity and were interrupted by the large hemoglobin-haptoglobin complex that inhibited spatial requirements for hemoglobin reactions with NO in tissues. Collectively, our data show that compartmentalization of hemoglobin by haptoglobin provides a novel framework for innovation aimed at reducing hemoglobin-driven neurological damage after subarachnoid bleeding.


Assuntos
Haptoglobinas/administração & dosagem , Hemoglobinas/administração & dosagem , Hemorragia Subaracnóidea/metabolismo , Espaço Subaracnóideo/metabolismo , Vasoespasmo Intracraniano/metabolismo , Animais , Artéria Basilar/metabolismo , Encéfalo/metabolismo , Líquido Cefalorraquidiano/metabolismo , Modelos Animais de Doenças , Feminino , Haptoglobinas/química , Haptoglobinas/farmacologia , Hemoglobinas/química , Hemoglobinas/farmacologia , Humanos , Aneurisma Intracraniano/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteômica , Ovinos , Transdução de Sinais , Suínos
14.
Fluids Barriers CNS ; 16(1): 17, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31189484

RESUMO

BACKGROUND: Altered flow of cerebrospinal fluid (CSF) within the subarachnoid space (SAS) is connected to brain, but also optic nerve degenerative diseases. To overcome the lack of suitable in vitro models that faithfully recapitulate the intricate three-dimensional architecture, complex cellular interactions, and fluid dynamics within the SAS, we have developed a perfusion bioreactor-based 3D in vitro model using primary human meningothelial cells (MECs) to generate meningeal tissue constructs. We ultimately employed this model to evaluate the impact of impaired CSF flow as evidenced during optic nerve compartment syndrome on the transcriptomic landscape of MECs. METHODS: Primary human meningothelial cells (phMECs) were seeded and cultured on collagen scaffolds in a perfusion bioreactor to generate engineered meningeal tissue constructs. Engineered constructs were compared to human SAS and assessed for specific cell-cell interaction markers as well as for extracellular matrix proteins found in human meninges. Using the established model, meningeal tissue constructs were exposed to physiological and pathophysiological flow conditions simulating the impaired CSF flow associated with optic nerve compartment syndrome and RNA sequencing was performed. RESULTS: Engineered constructs displayed similar microarchitecture compared to human SAS with regards to pore size, geometry as well as interconnectivity. They stained positively for specific cell-cell interaction markers indicative of a functional meningeal tissue, as well as extracellular matrix proteins found in human meninges. Analysis by RNA sequencing revealed altered expression of genes associated with extracellular matrix remodeling, endo-lysosomal processing, and mitochondrial energy metabolism under pathophysiological flow conditions. CONCLUSIONS: Alterations of these biological processes may not only interfere with critical MEC functions impacting CSF and hence optic nerve homeostasis, but may likely alter SAS structure, thereby further impeding cerebrospinal fluid flow. Future studies based on the established 3D model will lead to new insights into the role of MECs in the pathogenesis of optic nerve but also brain degenerative diseases.


Assuntos
Reatores Biológicos , Meninges/metabolismo , Modelos Biológicos , Espaço Subaracnóideo/metabolismo , Engenharia Tecidual/métodos , Células Cultivadas , Humanos , Meninges/anatomia & histologia , Espaço Subaracnóideo/anatomia & histologia
15.
Fluids Barriers CNS ; 16(1): 13, 2019 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-31056079

RESUMO

BACKGROUND: As an alternative to advection, solute transport by shear-augmented dispersion within oscillatory cerebrospinal fluid flow was investigated in small channels representing the basement membranes located between cerebral arterial smooth muscle cells, the paraarterial space surrounding the vessel wall and in large channels modeling the spinal subarachnoid space (SSS). METHODS: Geometries were modeled as two-dimensional. Fully developed flows in the channels were modeled by the Darcy-Brinkman momentum equation and dispersion by the passive transport equation. Scaling of the enhancement of axial dispersion relative to molecular diffusion was developed for regimes of flow including quasi-steady, porous and unsteady, and for regimes of dispersion including diffusive and unsteady. RESULTS: Maximum enhancement occurs when the characteristic time for lateral dispersion is matched to the cycle period. The Darcy-Brinkman model represents the porous media as a continuous flow resistance, and also imposes no-slip boundary conditions at the walls of the channel. Consequently, predicted dispersion is always reduced relative to that of a channel without porous media, except when the flow and dispersion are both unsteady. DISCUSSION/CONCLUSIONS: In the basement membranes, flow and dispersion are both quasi-steady and enhancement of dispersion is small even if lateral dispersion is reduced by the porous media to achieve maximum enhancement. In the paraarterial space, maximum enhancement Rmax = 73,200 has the potential to be significant. In the SSS, the dispersion is unsteady and the flow is in the transition zone between porous and unsteady. Enhancement is 5.8 times that of molecular diffusion, and grows to a maximum of 1.6E+6 when lateral dispersion is increased. The maximum enhancement produces rostral transport time in agreement with experiments.


Assuntos
Modelos Teóricos , Soluções/administração & dosagem , Soluções/metabolismo , Espaço Subaracnóideo/efeitos dos fármacos , Espaço Subaracnóideo/metabolismo , Transporte Biológico/fisiologia , Sistema Nervoso Central/efeitos dos fármacos , Sistema Nervoso Central/metabolismo , Difusão/efeitos dos fármacos , Humanos , Injeções Espinhais , Porosidade/efeitos dos fármacos
16.
J Neurosci Methods ; 317: 45-48, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30738881

RESUMO

BACKGROUND: Intrathecal (IT) delivery is useful in both basic research and clinical treatments. Here we aim to test a new minimally invasive distribution route to the subarachnoid space (SAS) and the flow of IT administrations. We placed a radioligand into SAS during positron emission tomography (PET) scanning as a proof of concept. NEW METHOD: We injected a 11C-labeled PET-tracer using a surgically placed catheter in the cisterna magna of anesthetized female pigs. The pigs were scanned for 1.5-2 hours in a PET/CT-scanner. The pressure from continuous infusion of artificial CSF (aCSF) promoted distribution of the tracer. The procedure was done under continuous intracranial pressure (ICP) monitoring. The catheter was made accessible both by externalization through the skin and through a subcutaneously placed sterile titanium port connected to the catheter. After image reconstruction, we used PMOD software to assess the tracer distribution throughout SAS. Internalisation of the catheter to a port enables survival studies. Previous studies performing ventriculography have placed a catheter trough brain cortex and parenchyma; such procedures may affect any behavioural or neurological evaluation, and have an increased risk of bleeding per- and post-operatively (Kaiser & Frühauf, 2007). RESULTS: The PET-CT visualized tracer was evenly distributed in the SAS. Furthermore, the ICP measurement made it possible to adjust infusion speed within acceptable pressure levels. CONCLUSION: This new method can be useful for testing distribution of PET-tracers, antibiotics, chemotherapeutics and a wide range of other pharmaceuticals targeting the CNS and spinal cord in large animal models, and potentially later in human.


Assuntos
Processamento de Imagem Assistida por Computador , Injeções Espinhais/métodos , Tomografia por Emissão de Pósitrons , Espaço Subaracnóideo/diagnóstico por imagem , Espaço Subaracnóideo/cirurgia , Animais , Radioisótopos de Carbono/administração & dosagem , Feminino , Injeções Espinhais/instrumentação , Pressão Intracraniana , Monitorização Fisiológica , Espaço Subaracnóideo/metabolismo , Sus scrofa
17.
Mult Scler ; 25(7): 918-926, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-29882478

RESUMO

BACKGROUND: Alteration of T-follicular helper (TFH) and regulatory (TFR) subpopulations may contribute to the development of auto-reactive B-cell. OBJECTIVE: To investigate whether changes in TFH and TFR subsets are associated with abnormal IgG synthesis in blood and cerebrospinal fluid (CSF) of multiple sclerosis (MS) patients. METHODS: Paired blood and CSF samples were obtained from 31 untreated relapsing-remitting multiple sclerosis (RRMS) patients at diagnosis. Peripheral blood TFH (CD3+CD4+CXCR5+CD25-CD127+), TFR (CD3+CD4+CXCR5+CD25+CD127dim), conventional T-Helper (TH, CD3+CD4+CXCR5-CD25-CD127+), and regulatory T-cells (T-Reg, CD3+CD4+CXCR5-CD25+CD127dim) were analyzed in all RRMS patients and in 13 healthy controls (HCs). Qualitative and quantitative intrathecal IgG synthesis was evaluated in RRMS patients, who were then further subclassified according to the presence of IgG oligoclonal bands in blood and/or CSF. RESULTS: Compared to HC, RRMS had lower TFR percentage ( p < 0.01) and higher TFH/TFR ratio ( p < 0.001). In RRMS, TFH/TFR ratio correlated with both qualitative ( r = 0.56, p < 0.005) and quantitative intrathecal IgG synthesis (IgG Index: r = 0.78; IgGLoc: r = 0.79; IgGIF: r = 0.76, all p < 0.001). Patients with the highest TFH/TFR ratios had higher percentages of circulating B-cells (36.1 ± 35.2%, p < 0.05). CONCLUSION: In RRMS, increased TFH/TFR ratio associates with abnormal IgG production in blood and CSF, suggesting that antibody-producing cells, derived from deregulated peripheral germinal center reaction, colonize the CNS.


Assuntos
Imunoglobulina G/biossíntese , Esclerose Múltipla Recidivante-Remitente/imunologia , Esclerose Múltipla Recidivante-Remitente/metabolismo , Linfócitos T Auxiliares-Indutores , Linfócitos T Reguladores , Adulto , Feminino , Humanos , Linfonodos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla Recidivante-Remitente/sangue , Esclerose Múltipla Recidivante-Remitente/líquido cefalorraquidiano , Espaço Subaracnóideo/metabolismo
18.
Curr Stem Cell Res Ther ; 14(2): 191-195, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30027854

RESUMO

BACKGROUND: Cell therapy is an important strategy for the treatment of incurable diseases including those that occur in the Central Nervous System (CNS). Among different strategies, the method of delivering or transplantation of cells into the brain has shown significant effects on regeneration. In this study, a new protocol has been developed for the transplantation of adipose tissuederived stem cells into the brain through Cerebrospinal Fluid (CSF) in rat models. METHODS: For this purpose, a wide range of ages (7-30 days old) of male neonates of Wistar rats was used. Moreover, human adipose tissue was obtained from a superficial layer of abdomen through liposuction surgery. The size of the inserted part of needle to access middle cranial fossa and subarachnoid space in animals with an average weight of 10-80 g was determined. In addition, to confirm the entrance of needle into the subarachnoid space, CSF was aspirated slowly and then injection was done within two minutes. RESULTS: The findings showed the presence of transplanted human Adipose-Derived Stem Cells (hADSC) in the cerebellum and basal ganglia following three days and also after two months that confirmed the entrance of transplanted cells into the cerebrospinal fluid and migration of them into the brain tissue. All the animals survived after the transplantation process, with the lowest side effects compared to the available conventional methods. CONCLUSION: It can be concluded that the cells could be efficiently transplanted into CSF through subarachnoid space by injection via superior orbital fissure with a minimally invasive technique.


Assuntos
Doenças do Sistema Nervoso Central/terapia , Líquido Cefalorraquidiano/metabolismo , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Animais , Animais Recém-Nascidos , Gânglios da Base/crescimento & desenvolvimento , Gânglios da Base/metabolismo , Gânglios da Base/patologia , Doenças do Sistema Nervoso Central/líquido cefalorraquidiano , Doenças do Sistema Nervoso Central/patologia , Cerebelo/crescimento & desenvolvimento , Cerebelo/metabolismo , Cerebelo/patologia , Modelos Animais de Doenças , Humanos , Lipectomia , Ratos , Espaço Subaracnóideo/crescimento & desenvolvimento , Espaço Subaracnóideo/metabolismo
19.
J Biomech Eng ; 141(1)2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30267068

RESUMO

Global models for the dynamics of coupled fluid compartments of the central nervous system (CNS) require simplified representations of the individual components which are both accurate and computationally efficient. This paper presents a one-dimensional model for computing the flow of cerebrospinal fluid (CSF) within the spinal subarachnoid space (SSAS) under the simplifying assumption that it consists of two coaxial tubes representing the spinal cord and the dura. A rigorous analysis of the first-order nonlinear system demonstrates that the system is elliptic-hyperbolic, and hence ill-posed, for some values of parameters, being hyperbolic otherwise. In addition, the system cannot be written in conservation-law form, and thus, an appropriate numerical approach is required, namely the path conservative approach. The designed computational algorithm is shown to be second-order accurate in both space and time, capable of handling strongly nonlinear discontinuities, and a method of coupling it with an unsteady inflow condition is presented. Such an approach is sufficiently rapid to be integrated into a global, closed-loop model for computing the dynamics of coupled fluid compartments of the CNS.


Assuntos
Líquido Cefalorraquidiano/metabolismo , Simulação por Computador , Hidrodinâmica , Espaço Subaracnóideo/metabolismo , Modelos Biológicos , Dinâmica não Linear
20.
Am J Forensic Med Pathol ; 39(4): 304-308, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30028732

RESUMO

Cerebrospinal fluid (CSF) is often analyzed at postmortem. The presented preliminary study compared postmortem CSF samples for biochemical analysis from the subarachnoid space around the spinal cord and ventricular space of the brain. This study compared 15 paired CSF samples in which the CSF from the subarachnoid space via lumbar puncture had higher sodium and chloride levels and lower magnesium and potassium levels than CSF from the ventricles. The differences correlated significantly with the deceased's age and had a similar trend with postmortem interval. This study suggests that CSF from different collection sites has different electrolyte concentrations, which are age and possibly postmortem interval dependent. When collecting CSF, the pathologist should document the collection site, age, and postmortem interval, and the mixing of CSF samples from different sites should be avoided. Further studies are warranted to clarify other possible reasons to explain the observed differences.


Assuntos
Ventrículos Cerebrais/metabolismo , Medula Espinal/metabolismo , Espaço Subaracnóideo/metabolismo , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Cloretos/líquido cefalorraquidiano , Feminino , Patologia Legal/métodos , Humanos , Magnésio/líquido cefalorraquidiano , Masculino , Pessoa de Meia-Idade , Mudanças Depois da Morte , Potássio/líquido cefalorraquidiano , Sódio/líquido cefalorraquidiano , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...